Linear time encoding of cycle GF(2p) codes through graph analysis

نویسندگان

  • Jie Huang
  • Jinkang Zhu
چکیده

In this letter, we present a linear-complexity encoding algorithm for any cycle GF(2) code CE(G,H). We just need to investigate the case where G is a nontrivial connected graph. If G is a tree, the only codeword is the all-zero word. If G is not a tree, first, we show that through graph analysis H can be transformed into an equivalent block-diagonal upper-triangular form simply by permuting the rows and columns of H; then, we show that whether H is full row-rank or not, the code can be encoded in linear time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group-theoretic analysis of cayley-graph-based cycle gf(2p) codes

Using group theory, we analyze cycle GF(2) codes that use Cayley graphs as their associated graphs. First, we show that through row and column permutations the parity check matrix H can be put in a concatenation form of row-permuted block-diagonal matrices. Encoding utilizing this form can be performed in linear time and in parallel. Second, we derive a rule to determine the nonzero entries of ...

متن کامل

Group-Theoretic Analysis of Cayley-Graph-Based Cycle GF(2) Codes

Using group theory, we analyze cycle GF(2) codes that use Cayley graphs as their associated graphs. First, we show that through row and column permutations the parity check matrix H can be put in a concatenation form of row-permuted block-diagonal matrices. Encoding utilizing this form can be performed in linear time and in parallel. Second, we derive a rule to determine the nonzero entries of ...

متن کامل

Linear codes with complementary duals related to the complement of the Higman-Sims graph

‎In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7‎, ‎11$ defined by the 3‎- ‎7‎- ‎and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100‎. ‎With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...

متن کامل

Optimal Linear Codes Over GF(7) and GF(11) with Dimension 3

Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...

متن کامل

A module theoretic approach to‎ ‎zero-divisor graph with respect to (first) dual

Let $M$ be an $R$-module and $0 neq fin M^*={rm Hom}(M,R)$. We associate an undirected graph $gf$ to $M$ in which non-zero elements $x$ and $y$ of $M$ are adjacent provided that $xf(y)=0$ or $yf(x)=0$. Weobserve that over a commutative ring $R$, $gf$ is connected anddiam$(gf)leq 3$. Moreover, if $Gamma (M)$ contains a cycle,then $mbox{gr}(gf)leq 4$. Furthermore if $|gf|geq 1$, then$gf$ is finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Communications Letters

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2006